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Experimental study of nonlinear beam dynamics at VEPP-4M
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Abstract

Nonlinear dynamics of transverse beam motion has been studied experimentally at the VEPP-4M electron—positron
collider. Two aspects of nonlinear beam behaviour described in this paper are the amplitude-dependent tune shift and the
phase space trajectories near nonlinear resonances. The measurement results are presented and compared with the
theoretical prediction. ( 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Despite the progress in explanation of nonlinear
phenomena in circular accelerators, there still is
a gap between computer simulations or analytical
predictions and reality. To reduce this gap, many
dedicated experiments have been performed in
both hadron and lepton machines in recent years.
The list, far from being complete, includes dynamic
aperture experiment at the Indiana University
Cyclotron Facility [1,2], various measurements in
the vicinity of the 2

5
resonance in the Fermilab E778

experiment [3,4], the third-resonance study at the
Aladdin electron ring, Wisconsin [5,6], nonlinear
dynamics study at TRISTAN [7], etc. More com-
plete and well-prepared report can be found in Refs.
[8,9].

As it was recently found [10], the dynamic aper-
ture of VEPP-4M is strongly affected by magnetic
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field nonlinearities. The measured value of the dy-
namic aperture does not follow the lattice model
with nonlinear components computed from direct
magnetic measurements. In order to explain this
discrepancy and establish possible sources of
nonlinearities, phase space features were mea-
sured extensively at the VEPP-4M storage ring in
1995—1996.

This paper concerns the study of phase space
topology and nonlinear detuning under various
experimental conditions (betatron tunes, sextupoles
and octupoles strength, etc.). Motion of the gravity
centre of the beam was measured turn by turn after
excitation of coherent betatron oscillations by
a fast kicker magnet. Two ways of phase map
plotting were examined: by two BPM stations and
by a single BPM. FFT, when applied to the coordi-
nate array, provides a significant noise reduction
and an increase of trajectory resolution. The ampli-
tude-dependent tune shift was studied for both sex-
tupole and octupole perturbation. The experimental
data agree quite well with the tracking simulation
and model prediction.
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2. Hardware description

The VEPP-4M storage ring is a 6GeV racetrack
electron—positron collider with a circumference of
366m. The study was performed at an injection
energy of 1.8GeV. The relevant parameters of
VEPP-4M at this energy are given in Table 1.

To produce coherent transverse motion, the
beam is kicked vertically or horizontally by pulsed
electromagnetic kickers. The pulse duration is 50 ns
for the horizontal kicker and 150 ns for the vertical
one. Oscillation of the beam centroid and beam
intensity are measured turn by turn with a beam
position monitor (BPM) SRP3 for up to 4096 revol-
utions. The rms displacement resolution is p

x,z
K

70lm in a 1—5mA beam current range.
For a theoretical prediction the following sour-

ces of magnetic field nonlinearity were taken into
account:

1. 32 vertical and horizontal sextupole corrections
distributed along the magnets in the arcs (two
families, DS and FS).

2. Lumped sextupoles SES2, NES2 and SES3,
NES3 located symmetrically around the interac-
tion point.

3. Quadratic field component produced by the arc
magnet pole shape (two families, SSF and SSD).

4. Octupole correction coils incorporated in the
arc magnet main coils (32 corrections, two fami-
lies, SRO and NRO).

Main parameters of the nonlinear elements men-
tioned above are listed in Table 2.

Because of high beta-function values (K120m),
a bulk of natural chromaticity of the ring is produc-
ed by the final focus quadrupoles (K50% in
a horizontal plane and K60% in a vertical plane).

Table 1
Beam parameters for the experiment

Energy 1.8GeV
Revolution period 1.2ls
Betatron tunes (h/v) 8.620/7.560
Natural chromaticity (h/v) !13.6/!20.7
Horizontal emittance 35nm rad
Rms beam bunch length 6 cm
Damping times (h/v/long.) 35 /70 /70ms

Table 2
Main parameters of the nonlinear elements

Name No Length d2B/dx2

(m) (T/m2)

SSD 32 1.114 !1.68
SSF 32 1.113 1.11
SES2/NES2 4 0.20 9.25
SES3/NES3 2 0.20 !16.25
FS 32 0.342 5.24
DS 32 0.342 !9.25

This chromaticity is locally compensated by the
SES2/NES2 and SES3/NES3 sextupoles. Hence,
we can expect that the influence of these sextupoles
on the nonlinear dynamics should be emphasized.

3. Amplitude-dependent tune shift

Coherent beam oscillation is fired by several
kicker pulses with different amplitudes, and tune
was extracted from a FFT spectrum of 1024 revol-
utions. To avoid decoherence and various damping
mechanisms, a special algorithm is developed to
extract beam displacement from first 30—50 revol-
utions. The accuracy of the tune measurement is
better than 2]10~4. Before kick measurement the
following preparatory adjustments and calib-
rations are made:

1. Beta-functions are carefully measured in the
SRP3 pickup station (b

z
"12m, b

x
"4m) and

compared with those obtained by the model
calculation (b

z
"13.2m, b

x
"4.5m).

2. Tune-current dependence is measured (dl
x
"

!3]10~4 mA~1, dl
z
"!1.3]10~3mA~1) and

taken into account while studying the nonlinear
detuning. To reduce this effect, in every kick
series the beam intensity is dropped down for
less than 0.3mA.

3. The linearity and absolute kick amplitude calib-
ration is made by scrapers with an accuracy
better than 0.1mm.

4. The betatron tunes are set to the desirable point
by quadrupole lenses, the closed orbit distortion
is corrected and the chromaticity is adjusted
to +1.
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Fig. 1. Typical amplitude dependence of the betatron tune.

For the Hamiltonian composed of a nonpertur-
bed part H

0
and a small perturbation H

1

H(J, /, h)"H
0
(J)#H

1
(J, /, h), (1)

where the perturbation itself consists of constant
and oscillated parts

H
1
(J, /, h)"HM

1
(J)#HI

1
(J, /, h),

the amplitude-dependent tune shift is defined as

*l(J)"dHM
1
(J)/dJ.

For both octupole and sextupole perturbation,
the nonlinear tune shift is proportional to the
squared initial beam displacement (Fig. 1). A gen-
eral 2D form of the amplitude-dependent tune shift
can be expressed as (a second-order approxima-
tion):

*l
x
(a

x
, a

z
)"C

11
) 2J

x
#C

12
) 2J

z
,

*l
z
(a

x
, a

z
)"C

21
) 2J

x
#C

22
) 2J

z
,

where C
nm

depends on particular perturbative po-
tential. The measured and estimated coefficient
values are listed in Table 3.

The difference in theoretical and experimental
C

11
made us explore systematically the horizontal

Table 3
Nonlinear detuning coefficients

C
nm

]104 Theory Experiment
(m~1)

C
11

44 3900
C

12
!840 !1400

C
21

!840 !1750
C

22
!830 !1400

nonlinearity of the ring. The later may be induced
by octupole and/or sextupole (in second order)
errors that we did not consider in our model simu-
lation. To distinguish, which one defines C

11
in our

case, we used the difference between the determina-
tion of the octupole and sextupole tune shift. For
an octupole potential the horizontal tune shift is
independent on an initial tune value [11]

*l(0)
x

(J
x
)"

J
x

16pP
C

0

O(s)b2
x
(s) ds#o(J2

x
), (2)

where C is the machine circumference and O(s)"
(d3B

z
(s)/dx3)/Bo is the effective octupole strength.

Sextupole tune shift on the contrary depends on an
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Fig. 2. C
11

behaviour near a resonance 3l
x
"26 with normal (top) and reduced (bottom) sextupole driving term. Data points are

measured; the curve is predicted.

initial tune near the resonance 3l
x0
Km in a reson-

ant way and can be written as

*l(s)
x

(J
x
)K!J

x
) 36

A2
3m

3l
x
!m

#o(J2
x
),

where A
3m

is the azimuthal harmonic of the sex-
tupole Hamiltonian. The measured horizontal tune
shift as a function of an initial tune l

x0
in the

vicinity of the resonance 3l
x0
"26 is shown in

the top of Fig. 2. To fit the computed curve with the
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data points, we should move the curve in positive
direction by a value *l(0)

x
/2J

x
K3500m~1 indepen-

dently of initial tunes. We can propose that this
value is the octupole contribution to the total tune
shift.

To verify validity of this assumption, first, we
controlled octupole perturbation by the octupole
correctors SRO/NRO, distributed along the ring
arcs. Changing their excitation current from 0 to
!0.5A provides a decrease of the average level of
the C

11
(l

x0
) for all the unperturbed working points

l
x0

to a magnitude *l(0)
x

/2J
x
K1700 m~1, while its

resonant behaviour remains the same.
Next, we reduced the sextupole driving term re-

sponsible for the resonance 3l
x0
"26. The excita-

tion current of the SES2/NES2 sextupoles was
decreased from 8 to 4.4A and the relevant sex-
tupole harmonic became twice as less. Uncompen-
sated chromaticity was corrected by the sextupole
coils in the regular arc magnets. The theory pre-
dicts very weak effect of these correctors to the
driving term because of a low b

x
K6m there. The

resulting detuning is shown in the bottom of Fig. 2.
One can see that the average level of the detuning
retains, while the sextupole contribution is reduced.
It is clearly seen from the resonance stopband
* that was defined as a distance between the points
where the beam lifetime became as low as
300—400 s.

A detailed tracking study points out to the final
focus (FF) quadrupoles EL1/EL2 as a most prob-
able source of the octupole error. Otherwise we
should suppose an unrealistically high nonlinear
error in regular arc quadrupoles. It was shown in
Ref. [12], that quadrupole edge fields can produce
large detuning; however, in our case the relevant
contribution to the C

11
coefficient is ten times as

less as the measured one. That is why we suspected
that the octupole error was distributed in the FF
quadrupoles.

Following this indication, we have done a set of
measurements.

1. According to Eq. (2), first we measured quad-
ratic dependence of the octupole detuning on b

x
.

The excitation current in the quadrupoles
EL1/EL2 was changed, the tune point was ad-
justed back by the arc quadrupole magnets, the

chromaticity was compensated and closed orbit
distortion was corrected with an accuracy
(0.2mm in the final focus region and(0.5mm
at the rest of the ring. The results of the measure-
ment are presented in Fig. 3 where C

11
is shown

as a function of b2
x

in the FF quadrupoles. From
this result we can estimate the value of the oc-
tupole errors as follows:

OK0.5G/cm3"8.1m~4.

2. Employing steering coils around the interaction
region gives a possibility of measuring integ-
rated magnetic field distribution by an electron
beam. We can produce a local symmetric or
antisymmetric orbit bump in the horizontal
plane as it is shown in Fig. 4, keeping closed
orbit distortion in the rest of the ring within
0.5mm, and measure the betatron tune shift
caused by the magnetic nonlinearities. In case of
the symmetric bump the main contribution to the
tune shift is provided by the chromatic sextupoles
SES/NES, located inside the bump and it is diffi-
cult to extract the influence of small nonlinear
errors in the FF quadrupoles. But in case of the
antisymmetric bump the sextupole contribution
is substracted and measured betatron tune shift
as a function of orbit displacement x in the FF
quadrupoles unambiguosly demonstrates pres-
ence of integrated octupole nonlinearity (Fig. 5).
The orbit deviation in the bump is read by
6 pickup stations and allows one to reconstruct
beam displacement in the quadrupoles.
Least-squares fitting gives the following expres-
sion for a horizontal tune shift (x in cm):

1000 )*l
x
"!0.8#3x#10x2#0.84x3#2.

From the other hand, the gradient error
dk"dB

1
/Bo, where B

1
"dB

z
/dx, produces

a horizontal tune shift according to

*l
x
"

1

4pPb
x
(s)dk(s) ds,

and the gradient error itself can be represented
as a series

dB
1
"dB

10
#B

2
x#1

2
B
3
x2#1

6
B
4
x3#2,

B
n
"

dnB
z

dxn
.
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Fig. 3. Dependence of the C
11

coefficient on the b2
x

value in the FF quadrupoles.

Fig. 4. Closed-orbit bump to measure the integrated magnetic field distribution by electron beam around the interaction point (IP). Left
— antisymmetric, right — symmetric.

Comparison with the measurement results gives
us the octupole error in the FF quadrupole
OK0.5G/cm3 that agrees well with the pre-
vious estimation.

3. Due to the symmetry of the vector magnetic
potential, a dodecapole componet B

5
is an in-

herency of a quadrupole field. For an ideal

quadrupole magnetic field is represented as

B
z
"B

1
x#1

5¦
B

5
x5#2.

Hence, the octupole component in a quadrupole
lens is proportional to the dodecapole and
squared closed-orbit distortion OJB

5
x2
#0
. To

check it, we made a symmetric local bump in the
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Fig. 5. Betatron tune shift as a function of orbit deviation in the FF quadrupoles in case of the antisymmetric bump.

Fig. 6. C
11

coefficient as a function of the COD in the FF quadrupoles.

FF region and study the horizontal amplitude-
dependent tune shift as a function of x

#0
. The

result is depicted in Fig. 6. Estimation of the
dodecapole value gives

B
5
K0.2

G

cm~5
K2.4]104 m~6.

These measurements seem to point out the FF
quadrupoles as a probable source of strong hori-
zontal detuning due to octupole field error OK

0.5G/cm3 (1.8GeV). Unfortunately, direct field
measurement gives only half of this value and the
reason for this discrepancy was not understood
yet.
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4. Phase space trajectories

The method of plotting phase space trajectories
in a real machine, similar to computer tracking, was
proposed at SPEAR [13,14] and is now widely
used in many accelerator laboratories. Two BPMs,
spaced in betatron phase by p/2, provide a turn-
by-turn signal, from which one can reconstruct
a phase space structure at a single-phase plane.

At VEPP-4M we have such pair of BPMs equip-
ped with turn-by-turn electronics. To study phase
space topology, we tracked motion of a beam cen-
troid with a usual two BPMs technique and with
a single BPM station. As it will be shown below, the
later, in some sense, can be more convenient than
two BPMs.

Let us consider a horizontal betatron oscillation
tracked by a BPM:

x(n)"ab1@2
x

cos 2pnl
x
,

x@(n)"!a/b1@2
x

[a
x
cos 2pnl

x
#sin 2pnl

x
], (3)

where a
x
"!b@

x
(s)/2 and b

x
(s) are betatron func-

tions, and a phase advance for nth turn equals
2pnl

x
. This expression can be rewritten in the form

x@(n)"[x
p@2

(n)!a
x
x(n)]/b

x
,

where x
p@2

(n) can be regarded as a coordinate meas-
ured by the BPM for which (i) a

x
,b

x
are equal to

those for the first BPM, (ii) the phase advance is
exactly p/2. Introducing “angle-action” variables
(J

x
, /

x
) and substituting Eq. (3) we can obtain

J
x
(n)"(x2

p@2
(n)#x2(n))/2b

x
,

tan/
x
(n)"x

p@2
(n)/x(n). (4)

One can see that a
x
cancels out in the expression for

J
x
(/

x
) and phase curves demonstrate “mere” non-

linear distortion.
Usually, a displacement x(n) and a slope x@(n)J

xn@2(n) of a kicked beam are measured by two
BPMs at every turn and pictured as a Poincaré
map (Fig. 7, top). A nonzero a

x
provides an addi-

tional distortion of the phase space structure in
(x, p

x
) that interferes with real nonlinear distortion.

To reconstruct the phase curve in “angle-action”
variables, we need to know accurately b

x
and b@

x
at

the position of the BPMs. Although at VEPP-4M
beta-functions are measured routinely [15], accu-
rate reading b@

x
is not easy. We measured b

x
at

four pick-up stations adjacent to each of each turn-
by-turn BPMs, fit these points to the theoretical
curve and extract b

x
and b@

x
at the azimuth of our

BPMs. The resulting plots are shown in the top of
Fig. 7.

However, the same map can be pictured more
easily using a single BPM approach when the beam
displacement and slope are taken from the same
turn-by-turn coordinate sequence. For each x

k
we

select x
k`n

according to the condition 2pMl
x
Nn"

(2m#1)p/2#d, where Ml
x
N is the fractional tune,

n, m are integers and d is the tolerance for the phase
shift. For d"0.02 in our tune region n"2. Under
this approach, a

x
, b

x
are the same for both values in

each pair and expression (4) is valid. It can be
shown that the chosen d gives a relative error in
action and angle less than 1%. Additionally, ap-
plying FFT and using few main harmonics to con-
struct the beam slope and displacement [16], per-
mits us to reduce drastically the measuring noise
and increase the resolution of the phase trajectories
distortion. Fig. 7 (bottom) shows a single BPM
phase portrait after a reconstruction from an in-
verse Fourier transform.

From the nominal tune point we can reach
a single-degree-of-freedom resonances 3l

x
"26 and

4l
x
"35. We explored nonlinear effects of horizon-

tal motion in a vicinity of both the resonances.

4.1. Resonance 3l
x
"26

Computer tracking shows that the resonance
3l

x
"26 is driven mainly by the strong chromatic

sextupoles in the interaction region. In the vicinity
of the resonance 3l

x
"m, we can obtain the phase

trajectory J
x
(/

x
) as a solution of the following

equation [12]:

JM
x
KJ

x
!f

3m
J3@2
x

cos 3/
x
,

f
3m

"6J2
A

3m
3l

x
!m

,

where JM
x
"const. can be found from the initial

value of the oscillation amplitude, and A
3m

is an
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Fig. 7. Horizontal phase trajectory measured by two BPMs (top) and using single BPM (bottom) (l
x
"8.69). Left pictures present

trajectories in (x, p
x
) variables while right pictures in (J, /) variables.

azimuthal harmonic of the sextupole perturbation

A
3m

"

1

48pP
2n

0

b3@2
x

(h)S(h) cos (3(t
x
(h)!l

x
h)#mh) dh.

Here S(s)"(d2B
z
(s)/dx2)/Bo is normalized sex-

tupole strength.
Fig. 8 shows results of the phase space measure-

ment at l
x
"8.62 for different kick amplitudes. The

inverse Fourier transform was employed. For this
resonance, fixed points are unstable (except for one
at the origin) and no stable islands can be seen.
Nevertheless, nonlinear motion is easily observed
by phase trajectories distortion.

To verify the experimental data, numerical track-
ing was used in a model of the machine where all
known nonlinear effects are included and unknown
but predicted in the previous section octupole error
is introduced in the FF quadrupoles. The resulting
data are plotted in Fig. 8 and demonstrate good
agreement with the measured points. Besides, we
used a simple Hamiltonian representation to calcu-
late the countur H"const. for the initial experi-
mental conditions. For the largest kick this countur
is shown as a solid line in Fig. 8.

Since nonlinear perturbation contributes to
phase space distortion at a level of 0.1mm, for
further noise reduction we use for each kick
strength data accumulation and averaging. In our
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Fig. 8. Measured and calculated phase map (l
x
"8.62).

case, a 10 fold accumulation allows to reduce the
rms noise value from 10—20lm to 4—6 lm. Such
spectral resolution permits us to calculate some
parameters of the nonlinear system. For instance,
we can estimate nonlinear perturbation as

f
3m

"

J
.!9

! J
.*/

J3@2
.!9

# J3@2
.*/

K

*J

2JM 3@2
,

where JM is the action averaged over the phase angle.
Fig. 9 demonstrates dependence of *J on JM 3@2 for

different kick amplitudes. One can see that this is
a linear dependence and the resonance driving term
can be extracted from it. The experimental value is
A

3 26
"!2.8$1.0m~1@2, while tracking with

chromatic sextupoles predicts A
3 26

"!2.1m~1@2.
The agreement seems to be not bad.

To demonstrate the influence of the high beta
sextupole SES/NES to beam dynamics we de-
creased excitation current from 8 to 4.4A and
redistributed chromaticity compensation to the arc
sextupole correction coils. A reduction of the phase
curve distortion is easily seen in Fig. 10.

4.2. Resonance 4l
x
"35

Fourth-order resonance was studied in-depth in
Ref. [1]. Similar resonance 4l

x
"35 can be reached

from our nominal working point. Fig. 11 shows the
phase map in normal coordinates (x, p

x
) at the tune

l
x
"8.752 (left) and l

x
"8.748 (right). The first plot

demonstrates beam motion near the resonance while
the second one shows the particles kicked inside the
islands. Processing of the experimental data gives us
features of the nonlinear motion and allows us to
compare the characteristic of our nonlinear model
with those evaluated in the previous sections.

The beam trajectory returns to the same island
every fourth revolution. Successive points inside
the island should form a closed trajectory around
a stable fixed point but in our case the motion
inside the island is smeared. The reason, as it was
pointed out in Ref. [1], could be either transverse
betatron coupling or measurement noise.

The Fourier spectrum under the resonance con-
dition (Fig. 12) detects no linear coupling peak so
we made a conclusion that in our case the main
reason for the smearing is measurement noise. The

V. Kiselev et al./Nucl. Instr. and Meth. in Phys. Res. A 406 (1998) 356—370 365



Fig. 9. *J as a function of JM 3@2.

Fig. 10. Measured phase curves: usual and reduced sextupoles.

resonance island oscillation is a slow motion and
this fact allows us to use the moving averaging
which effectively reduces the noise. The resulting
stable ellipses are shown in Fig. 13 in (x, p

x
) and

(J
x
, /

x
) variables.

The measurement results provide an island tune
)"0.0013$0.0001 that corresponds to a period
of 190$15 orbital revolutions.

To evaluate the parameters of our nonlinear sys-
tem we used general form of isolated resonance
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Fig. 11. Phase trajectories near and at fourth-order resonance.

Fig. 12. Fourier spectrum of the motion on the resonance 4l
x
"35.

Hamiltonian, transformed to the rotating system in
phase space [20]

H
3
"dI#a(I)#f (I) cosm/. (5)

In our case, when the resonance 4l
x
"35 is con-

sidered (m"4), the distance from the resonance
d"l

x
!8.75, the detuning a (I) relates to the de-

tuning coefficient introduced earlier as a (I)"
C

11
I2 and the resonance driving term corresponds

to the relevant azimuthal harmonic as f (I)"A
435

.
For small amplitudes the oscillation frequency is
given by

)2"a@@(I
3
) f (I

3
)m2,

where I
3
is the amplitude which yields the oscilla-

tion frequency at resonance and the prime indicates
differentiation with respect to I. The results of fit-
ting the constant Hamiltonian counturs to the
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Fig. 13. Motion on resonance 4l
x
"35.

experimental data plot is shown in Fig. 13 in ac-
tion-angle coordinates.

The fitting yields the following parameters of the
resonance Hamiltonian:

)"0.0013$0.0001,

C
11
"3600$200m~1,

I
3
"1.7]10~7m,

A
435

"550$50m~2.

Supposing, as previously that the main octupole
error concentrates in the FF quadrupoles, the value
of the error needed to produce the measured har-
monic A

435
is deduced to be about OK0.6G/cm3.

One can see that the parameters obtained from the
fourth-order resonance are in good agreement with
those extracted from the experiments described
above.

5. Beam distribution

To visualize the beam profile, dissector tubes are
used at VEPP-4M [18]. The dissector is a scanning
photoelectron device providing information about
electron distribution and beam size in transverse

and longitudinal directions. A pulse of radiation
from the electron beam produces at the photo-
cathode an image reproducing time structure of the
light pulse. Scanning of the image provides an an-
ode signal of the secondary electron multiplier tube
that repeats the shape of the observed distribution.
In stroboscopic mode the dissector provides time
resolution of 2 ps.

Fig. 14 (left) demonstrates the horizontal beam
profile at the normal conditions (l

x
"8.62). The

beam size is much smaller than the dynamic aper-
ture and no distortion of phase trajectories is detec-
ted: the Gaussian shape of the intensity distribution
with p

x
"0.6mm is determined by quantum fluctu-

ation. To enhance the nonlinearity, we shifted the
horizontal tune to the sextupole resonance
3l

x
"26. In Fig. 14 (right) a typical triangular

beam profile is shown at l
x
"8.6709 (cf. Ref. [19],

where the wire scanning measurements of the beam
distribution are described). At the same time, the
beam lifetime approaches about 40 s that corres-
ponds to an aperture limitation of about 4.5p

x
.

When the excitation of the SES/NES sextupoles
was decreased in a factor of two, the same profile
was obtained at l

x
"8.6703, i.e. much closer to the

third-order resonance.
Hamiltonian (5) represents the third-order reson-

ance 3l
x
"m, but with different coefficients

H
3
"d

3
I
x
#C

11
I2
x
#f

3
I3@2
x

cos 3/
x
,
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Fig. 14. Electron beam profiles measured with the dissector tube (Left) normal conditions (right) close to resonance 3l
x
"26.

where d
3
"l

x
!m/3, f

3
"2J2A

3m
and A

3m
is the

azimuthal sextupole harmonic. The boundary of
the stable area is formed by curves joining unstable
fixed points which can be found by the conditions

LH
3

LI
x

"

LH
3

L/
x

"0,

which yields (d
3
(0, C

11
'0)

I1@2
&1

"

3f
3

8C
11
AS1#

32

9

d
3
C

11
f 2
3

!1B. (6)

The beam lifetime of 40 s requires the aperture size
of 4.5p

x
(in our case the horizontal damping time is

equal to 30ms). Substituting this value in Eq. (6),
we evaluate the magnitude of the sextupole har-
monic A

326
"!2.7m~1@2 that nicely agrees with

that obtained from the phase space distortion.

6. Conclusion

We studied two aspects of nonlinear dynamics,
namely, amplitude-dependent tune shift and phase
space trajectories, at the VEPP-4M electron—posit-
ron collider. The measurements were performed by
the single turn-by-turn BPM technique and by the
dissector tube. The experiments indicate that the
features of our nonlinear system are strongly in-
fluenced by octupole perturbation that does not

follow from the model lattice representation. All
measurement results agree well with the theoretical
prediction if we assume small (about 0.5G/cm2)
octupole error in the final focus quadrupoles. Un-
fortunately, direct magnetic measurement provides
only one-half of the required value. This discrep-
ancy is a topic for further investigation.
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